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Abstract—An incremental database can be widely used in many
areas due to the changes in data over time, including the location-
based services (LBS), environmental ecology, and also the busi-
ness behavior patterns. Looking for the spatial co-location pattern
that appears frequently nearby over an incremental database
has become an interesting and essential topic. Many spatial co-
location pattern mining approaches are for traditional spatial
databases. Therefore, they do not need to consider candidate
instances generated and update their participation index in the
process. Yoo et al. have proposed the EUCOLOC algorithm
to mine co-location patterns in the incremental database. The
EUCOLOC algorithm not only needs large storage to store points
in the database and their relationships with each other, but
also generates many unnecessary candidate instances. In this
paper, we propose an approach to mine the co-location patterns
for incremental database. Our approach can avoid generating
non-incremental candidate instances and non-clique instances.
Moreover, we also avoid storing the duplicated data. From our
experimental results, we show that our method performed more
efficiently than the EUCOLOC algorithm.

Index Terms—Incremental Database, Spatial Co-location Pat-
terns, Spatial Co-location Rules, Spatial Database, Spatial Data
Mining

I. INTRODUCTION

Spatial co-location patterns mining is a new branch of
spatial data mining, which is the process of discovering
interesting and implicit, but potentially valuable patterns from
spatial databases. In recent years, the huge quantity spatial data
shows that it is increasingly important and difficult to discover
co-location patterns with valuable information. It is essential
to extract what we want from geo-spatial data and apply it to
many domains. Furthermore, we can make decisions based on
large spatial datasets by using the extracted information.

There are many approaches to discover co-location patterns
in spatial data mining. Huang et al. propose the full-join
approach [1] which is the Apriori-like method. It can have
good performance for the sparse spatial dataset, but it is inef-
ficient for the dense spatial dataset. As the increased number
of the co-location patterns, it needs the long computation time
for co-location pattern mining. Huang and Shekhar propose
the partial-join approach [2] and the join-less approach [3].
Nevertheless, the methods mentioned above may be restricted
to short length patterns or sparse spatial database. However,
as the amount of data increased rapidly, the number of long

length patterns which often present with large or dense spatial
database also increases. For the purpose of resolving the
performance under a dense dataset and the long prevalence
co-location patterns, the maximal co-location pattern mining
was developed [4]–[7].

In addition to approaches of mining co-location patterns
which we have mentioned above, there are some other useful
methods in co-location patterns mining. For example, there are
some researchers who focus on the spatial co-location mining
without the threshold which is pre-determined by users [8], [9].
Furthermore, there are also some researchers who study about
the Top-k closed co-location patterns [10], [11] and the other
topics are about mining maximal cliques [12], [13], maximum
frequent itemsets and spatial high utility co-location patterns
[14].

Recently, spatial co-location pattern mining in the incremen-
tal database [15]–[17] is a new issue in the spatial mining field.
The approaches of mining spatial co-location patterns which
we have mentioned above are suitable for the static database
situation. Once new data is inserted into the database, those
approaches will take a lot of time to scan the database for
several times and even need to reconstruct the data structures.
However, in the real world, we can find that the data informa-
tion in various fields will increase over the time. For example,
development of business, biological symbiotic species, crime
activity and interdependent events such as traffic jam, car
accidents , policemen and ambulances in transportation [17],
[18]. For the above reasons, it is not enough effective for
previous algorithms to deal with incremental databases for
mining spatial co-location patterns. Therefore, in [17], Yoo et
al. propose the EUCOLOC algorithm to generate candidate
instances and update the co-location patterns in the incre-
mental database. However, their method has same problems
which include that it stores the data twice or even many times
and generates redundant and useless candidate instances (i.e
non-incremental candidate instances and non-clique candidate
instances).

Therefore, in this paper, we propose a method to update
the co-location patterns and then mine the database. There
are several advantages in our method. First, we propose
a new approach to rearrange the relations in order to use
less storage to store data information and also can avoid



generating the non-incremental candidate instances. Second,
we will check the relation of subsets before generating size-k
candidate instances. In this way, we can avoid generating non-
clique instances completely. Therefore, our approach can avoid
generating non-incremental candidate instances and non-clique
instances. Moreover, we also avoid storing the duplicated data.
From our experimental results, we show that our method needs
less time and generates fewer number of candidate instances
than the EUCOLOC algorithm.

The rest of the paper is organized as follows. In Section 2,
we give a survey of some well-know approaches for mining
spatial co-locations patterns in the spatial database. In Section
3, we present our proposed approach. In Section 4, we present
the performance of our approach and make a comparison
between our approach and the EUCOLOC algorithm. Finally,
we give a conclusion in Section 5.

II. RELATED WORK

In recent years, mining spatial co-location pattern is one of
the prominent problems in the spatial data mining field. It is
different from the traditional association rule mining problem
[19] because of mining spatial co-location pattern without
the nature notion of transactions. First, we will describe the
bisic concept of spatial co-location mining. Next, we will
introduce EUCOLOC algorithm [17] for increamental co-
location pattern mining.

A. SPATIAL CO-LOCATION PATTERNS MINING

Fig. 1 shows an example of the spatial data, and we use the
spatial example to explain the related definition. Object E.i
represents an instance i of event type E. The spatial example
contains events A, B, C, with 5, 3, 4 instances for each event,
respectively. We can see that if there is a solid line between two
different types of objects, then the two objects have a neighbor
relationship. It means that A.1 has a neighbor relationship with
B.1, but B.3 does not have the neighbor relationship with B.1.

Fig. 1: The definition of Participation Index (PI).

The Participation Index PI(X) of X = {E1, ..., Ek} is
defined as PI(X) = minEi∈X{PR(X , Ei)}, 1 ≤ i ≤ k
[3]. The Participation Ratio PR(X , Ei) is defined as PR(X ,
Ei) = Number of distinct objects of Ei in instances of X

Number of objects of Ei
. If

PI(X) is greater than a given minimum prevalent threshold, X
is a prevalent co-location. In Fig. 1, (A.2, C.3), (A.2, C.4)
and (A.5, C.2) are neighbor relations. There are two distinct
instances A.2 and A.5 in the co-location {A, C}, so we can

calculate PR({A,C}, A)= 2
5 . Similarly, in the co-location {A,

C}, there are three distinct instances C.2, C.3 and C.4, so we
can calculate PR({A,C}, C) = 3

4 . Therefore, PI({A,C}) is
2
5 , which is the minimum value between PR({A,C}, A) and
PR({A,C}, C).

B. INCREMENTAL SPATIAL CO-LOCATIONS MINING

The problem of updating spatial co-location patterns
presents more challenges than updating frequent itemsets in a
traditional transaction database. In classic association analysis,
database updates mean simply adding new transaction records,
or deleting existing ones. The newly added transaction records
are separately handled from existing records because the
database is a collection of disjoint transaction records. In
contrast, when a spatial database is updated, the new data point
can establish neighbor relationships with existing data points
and other new data points in continuous space. Therefore,
all neighbor relationships in the updated database should be
checked to maintain co-location patterns [17].

Let Sold = O1, ..., On be a set of old data points and Sinc

= On+1, ..., On+h be a set of new data points added in the
database. Let S be all data points in the updated database, S =
Sold∪Sinc. There are two types of co-location instances in the
updated database. The retained co-location is a prevalent event
set in both Sold and S. The emerged co-location is an event
set which is not prevalent in Sold but is prevalent in S. They
propose an Efficient Update algorithm for the COLOCation
patterns (EUCOLOC algorithm) with the addition of spatial
data points [17].

In Fig. 2-(a), the original spatial database has three different
event types, A, B and C. The total number of instances of
each event type, A, B and C is 4, 5, 3 respectively. Fig. 2-(b)
shows the neighbor objects that the instance in the first column
has the neighbor relationship with the instance in the second
column. For example, object A.1 has the neighbor relationship
with object B.1 and object C.1, but they can not sure that object
B.1 and object C.1 have neighbor relationship. After they
insert new data points, A.5, B.6, B.7, B.8, B.9 and C.4, C.5,
they can get the incremental data points and their relationships
in Fig. 2-(c) and the incremental neighbors database in Fig.
2-(d). They denoted ’*’ for new data points. Then, they union
the old neighbors database and incremental neighbors database
which can get the updated neighbors database in Fig. 3-(b).
Later, they use the incremental neighbors database to generate
candidate instances and use the updated neighbors to check
the relation of the subset.

They use the A-incremental neighborhood transactions in
incremental neighbors database to generate candidate instance
[17]. They generate 11 candidate instances, including 2 non-
incremental instances and 5 non-clique instances. In Fig. 3-(a),
we can find the non-incremental instances are {A.1, B.1, C.1}
and {A.3, B.3, C.1}. The non-clique instances are {A.1, B.7*,
C.1}, {A.3, B.3, C.5*}, {A.3, B.8*, C.1}, {A.3, B.8*, C.5}
and {A.5, B.6*, C.1}. If the points of the candidate instance all
exist in the original neighbor database, they will become non-
incremental instance. Otherwise, they have to use the updated



(a) old data points and their relationships

(b) the original neighbors database

(c) incremental data points and their relationships

(d) the incremental (changed and new*) neighbors
database

Fig. 2: An example of original database and incremental spatial
database.

(a) generating candidates and checking relation of subset

(b) updated neighbors database

Fig. 3: An example of mining incremental spatial database.

database to check the relation of subset. For example, {A.1,
B.7*, C.4*}, they have to check whether if there is a neighbor
relationship between B.7* and C.4*. If B.7* and C.4* have
neighbor relationship, then they call it as the clique instance;
otherwise, they call it as the non-clique instance.

III. PROPOSED METHOD
In this section, we use one example of the spatial dataset to

illustrate our method. In Fig. 4, the original database, which
contains 17 points and several relations (edges) in the database.
These points are composed of five different event types.

When new data points are inserted, many new relations
(edges) will also be added at this time. For the example shown
in Fig. 5, nine new data points and seventeen new relations
(edges) are inserted, where the dotted lines represent the new
relations in the incremental database and the solid lines rep-
resent the old relations in the original database. In additional
to the relations, there are three types of points, where squares
represent the old data points having relationships with the new
data points in the incremental database, pentagons represent
new data points and circles represent the old data points.

Input:
1. A set of spatial event types ES = {E1, E2, ..., En}.



Fig. 4: Old data points and their relationships in the original
database.

Fig. 5: Incremental data points and their relationships.

Event type ES = {A, B, C, D, E}.
2. A set of spatial instances IS = I1 ∪ I2 ∪ ... ∪ In, where
Ik(1 ≤ k ≤ n) is a set of instances of event Ek.
Spatial dataset IS = {A.1, A.2, A.3, A.4, A.5, B.1, B.2,
B.3, B.4, B.5, C.1, C.2, C.3, D.1, D.2, E.1, E.2}

3. The set of relations of size-2 instances.
4. The minimum prevalence threshold Min prev.
5. Inserting new spatial instances (Points, 9 points)

{A.6, B.6, B.7, B.8, C.4, C.5, C.6, D.3, E.3}
6. Inserting new edges (Relations, 17 edges).

Fig. 6 shows all instances of each type A, B, C, D and
E and its related count, old data points and new data points
after inserting new data points. Here, we mark the new data
points with ’*’. For example, event C has six instances in
the incremental database, where C.1, C.2, C.3 are old data
points and C.4, C.5, C.6 are new data points with an asterisk
annotation.

Fig. 6: Instance sets of each spatial event (IS) after inserting
new data points.

Fig. 7: Inserting new relations of size-2 instances (IRI2) (17
Edges).

In Fig. 7, IRI2 shows the insertion of new relations of
size-2 instances. In the first column, we can find that every
instances in each pair have asterisk annotation. It represent
that the relations (edges) are made by two new data points.
Other relations in IRI2 are made by one new data point and
one original data point.

The whole processing steps are described as follows:
Step 1: Rearrange IRI2
In this step, we rearrange each related instance pair of IRI2.

We exchange the position of two instances, if one of the
instances has the asterisk annotation.

For example, for relation (A.1, C.6*) in Fig. 7, we exchange
the two instances and get (C.6*, A.1). Because instance C.6*
has ’*’ symbol, which represents the new data point. Then,
we sort each pair, based on the first position of the instance in
the alphabetical order. After the process of rearranging IRI2,
the results are shown in Fig. 8.

Fig. 8: Rearranging (IRI2) by * and the alphabetical order.

Step 2: Construct the relations of the incremental neighbors
In this step, we construct the table of relations in the in-

cremental neighbors database based on the following policies:
(a) Sort elements according to the asterisk annotation priority,
then the alphabetical order. (b) Store the incremental neighbor
relationships between different types.

We construct a table to store the incremental neighbor rela-
tionships between different event types after we rearrange the
position of the two instance in each neighbor pair which has
the asterisk annotation in the incremental database as shown in
Fig. 9. In this table, we can find that there are nine referenced
points and seventeen neighbor instances, as compared to the
EUCOLOC algorithm which has sixteen referenced points
and thirty neighbor instances. However, in the incremental
database of our approach, we also insert only those nine new
data points and seventeen new relations (edges). Since the
table of original neighbors database and incremental neighbors



database are completely non-overlapping, our approach is
called non-overlapping approach. The updated database can
be obtained by just combining the above two databases as
shown in Fig. 10.

Fig. 9: The incremental neighbors database.

Fig. 10: The updated neighbors database.

In Fig. 10, the table is used to store all neighbor relation-
ships between different event types. We can find that there
are 26 referenced points, 34 neighbor instances. Morever, the
updated neighbors database also be used to check the relations
between referenced point and neighbor instances before we
generate size-k candidate instances.

Step 3: Generate size-k candidate instances
In this step, the key point of the process is as follows: (a)

Sort elements according to the asterisk annotation priority, then
the alphabetical order. (b) Check each instance of neighbor
instances except the last one and confirm that it is followed
by other instances when it is a referenced point.

After we construct the table of the incremental neighbors,
we will generate the size-k candidate. First, we will use the
referenced point to be the first element and then followed
by other neighbor instances behind. In the size-3 case, for
example, A.6* will be the first element and two different
instances of the set of {B.8*, C.5*, B.1, C.1} will be behind

A.6*. There are four candidates of referenced A.6* in the
size-3 case, including {A.6*, B.8*, C.1}, {A.6*, B.8*, C.5},
{A.6*, B.1, C.5*} and {A.6*, B.1, C.1}. However, we find that
{A.6*, B.1, C.5*} is a non-clique candidate after we check
the instances of the subset and we find that B.1 and C.5*
do not have relationship in the updated neighbors database.
To resolve this problem, we proposed the method, which can
avoid generating non-clique candidates, instead of generating
non-clique candidates and then delete them soon.

For the above method which we have mentioned, the
first key point is that the last element of the third colomn,
neighbor instances, in the incremental neighbors database can
be ignored in the process of generating candidates of size-
k by focusing it as the main role, where k≥3. The reason
is that it has no other following neighbor in the column with
which the neighbor instance could be considered. For example,
for referenced point A.6*, we will consider the combination
of (B.8*, C.5*), (B.8*, C.1), (C.5*, B.1) and (B.1, C.1) in
addition to the referenced point A.6*. The second key point
is that in order to check the combination of elements, for
example, (B.8*, C.1, C.5*) exist in the database, i.e., existing
the neighbor relationship in the database, we could check
updated the neighbors database. That is, we do not have to
construct another data structure to store the information and
then check it.

Fig. 11: The checking relation table.

Fig. 11 shows that the incremental neighbors database which
has been further processed. We can find that each referenced
point corresponds to the last instance of the neighbor instances
will be deleted, including C.1, A.3, C.2, B.3, B.1 and so on.
Morever, the referenced points which are not followed by any
neighbor instances will also be deleted from this table. For
example, the referenced points are C.5*, D.3* and E.3*. Each
referenced point corresponding to the neighbor instances needs
to be checked except the last one before we generate size-k
candidate instances.

For example, the referenced point B.6* will combine the
neighbor instances C.4* and A.3 to be a candidate, we will
check the instance C.4* at first. The instance C.4* is followed
by A.3 and B.3, when it is a referenced point in the updated
neighbors database. Then, we can get the relation of (C.4*,
A.3). Therefore, the result of generating candidate instance
{B.6*, C.4*, A.3} is valid.

Let’s see another example in Fig. 12, for the referenced



Fig. 12: The example of generating size-k candidate instances
of event A.

point A.6*, we will check B.8*, C.5* and B.1 at first. The
instance B.8* is followed by C.5* and C.1 when it is a
referenced point in the updated database, too. Therefore, we
can generate the candidate instances {A.6*, B.8*, C.5*} and
{A.6*, B.8*, C.1}. However, C.5* is not followed by any other
neighbor instances. We can not generate the candidate instance
{A.6*, C.5*, B.1}. Then, we check B.1 and can find that B.1 is
followed by C.1, C.3 and D.1. we can get the relation of (B.1,
C.1). Therefore, the result of generating candidate instance is
{A.6*, B.1, C.1}. After finishing the process of the referenced
point of event A, for events B, C, D and E, we follow the above
steps and so on.

Fig. 13: The comparison of generating size-k candidate in-
stances of A.6*.

Fig. 13 shows the comparison of generating size-k candidate
instances of A.6*. We can find that there are only three
clique candidate instances in our non-overlapping approach
as compared to four candidate instance (including one non-
clique candidate instance which will be pruned soon) in the
EUCOLOC algorithm. In addition, if the neighbor instances
which have the same referenced point and are the same event
type, we will not generate size-k candidate. For example, for
the referenced point B.8*, there are two neighbor instances
C.5* and C.1. If we generate them in the size-3 case, the
results will be {B.8*, C.5*, C.1}. It is invalid, because we do
not consider relations of the same event type. After generating
all candidate instances in Step 3, we can get eight size-3
candidate instances. The resulting table is shown in Fig. 14.
The first column of this table represents the referenced point

in the incremental neighbors database. The second column of
the table represents the generated candidate instances of size-
k, and the last column is the result of rearranging contents of
the second column by the alphabetical order.

Fig. 14: The set of candidate of size-3 instances.

Fig. 15: The final results of size-3 candidate instances.

Step 4: Update the IncPI and IncPR
In the Step 4, we will check whether the candidate instances

exist at first. In Fig. 15, we can find that there are really
eight candidate instances in the spatial database. Then, we will
update the participation index and the partipation ratio in the
incremental database. The formula of participation index and
participation ratio as follows: The Incremental Participation In-
dex IncPI(X) of a co-location X = {E1, ..., Ek} is updated
with IncPI(X) = minEi∈X{IncPR(X , Ei)}, 1 ≤ i ≤ k.
The Incremental Participation Ratio IncPR(X , Ei) of event
type Ei with the incremental co-location instances of X ,
IncPR(X , Ei) = |Oi

⋃
NIi|

|SOLDi| + |SINCi| , where | SOLDi |
is the total number of original objects of Ei. | SINCi | is
the total number of new objects of Ei. Oi is a set of distinct
objects of Ei in the original co-location instances of X . NIi
is a set of distinct objects of Ei in the incremental co-location
instances of X .

In Fig. 14, we can get eight candidate instances, including
{A.1, B.1, C.6*}, {A.2, B.7*, C.2}, {A.3, B.3, C.4*}, {A.3,
B.6*, C.4*}, {A.5, B.1, C.6*}, {A.6*, B.1, C.1}, {A.6*, B.8*,
C.1} and {A.6*, B.8*, C.5*} as shown in Fig. 16. They
belong to the co-location pattern {A, B, C}. Then, we can
calculate the incremental participation ratio and incremental
participation index of co-location pattern {A, B, C}.

In Fig. 16, there are five distinct instances A.1, A.2, A.3, A.5
and A.6* (including 4 original ones, 1 incremental one) in the
co-location {A, B, C}, so we can calculate IncPR({A,B,C},



Fig. 16: The incremental participation index and incremental
participation ratio of co-location pattern {A, B, C}.

A)= 5
6 . In the co-location {A, B, C}, there are five distinct

instances B.1, B.3, B.6*, B.7* and B.8* (including 2 original
ones, including 3 incremental ones), so we can calculate
IncPR({A,B,C}, B) = 5

8 . Similarly, there are five distinct
instances C.1, C.2, C.4*, C.5* and C.6* (including 2 original
ones, including 3 incremental ones), so we also can calculate
IncPR({A,B,C}, C) = 5

6 . Therefore, IncPI({A,B,C}) is
5
8 , which is the minimum value between IncPR({A,B,C},
A), IncPR({A,B,C}, B) and IncPR({A,B,C}, C).

Step 5: The minimum prevalence threshold
Finally, in this step, after updating the incremental partic-
ipation, we will check whether the co-location pattern is
prevalence. The criterion is that the co-location pattern is the
prevalence if the participation index of candidate is greater
than the min prev threshold, Otherwise, the co-location pat-
tern is called non-prevalence.

IV. PERFORMANCE

In this section, we present the experiments to evaluate the
performance between our non-overlapping approach and the
EUCOLOC algorithm. All of the experiments were performed
on a PC with an Intel Core i5 2.7 GHz × 2 CPU and 8 GB
main memory, running on the Windows 10 platform. Both of
the algorithms were implemented in Oracle Java SDK 7 and
coded in Java language.

First, we present the evaluation of our non-overlapping
approach and the EUCOLOC algorithm by varying the mini-
mum prevalence threshold min prev of the synthetic database.
Second, we compare the performance by varying the distance
between the points of the synthetic database. The following
parameters used in the processing of generations synthetic data
are shown in Table I. There are three datasets in our simulation
as shown in table II.

TABLE I: Parameters Setting Used in The Experiment

Parameters Description
dis thr The threshold of the neighbor distance
min prev The threshold of minimum prevalence
|En| The number of event types
|In| The number of original instances
|NIn| The number of incremental instances
|Rn| The number of relations in the incremental database

TABLE II: The Datasets in Our Simulation

|En| |In| |NIn|
Dataset 1 25 8k 2k
Dataset 2 40 6k 4k
Dataset 3 50 6k 4k

(a) dis thr = 10, |En| = 25, |In| = 8k, |NIn|= 2k, |Rn| = 3.6k

(b) dis thr = 10, |En| = 40, |In| = 6k, |NIn|= 4k, |Rn| = 7k

(c) dis thr = 30, |En| = 50, |In| = 6k, |NIn|= 4k, |Rn| = 11.2k

Fig. 17: A comparison of the processing time under different
minimum prevalence threshold.

Note that the performance measure of the processing time
includes the time for the generation of candidate instances
and the mining step. From Fig. 17 and Fig. 18, we show
that the processing time of our non-overlapping approach is
faster than that of the EUCOLOC algorithm. Because our
non-overlapping approach could generate fewer number of the
candidate instances than the EUCOLOC algorithm, they need
long time to deal with the generating of candidate instances



(a) Min prev= 0.2, |En| = 25, |In| = 8k, |NIn|= 2k, |Rn| = 3.6k

(b) Min prev= 0.2, |En| = 40, |In| = 6k, |NIn|= 4k, |Rn| = 7k

(c) Min prev= 0.2, |En| = 50, |In| = 6k, |NIn|= 4k, |Rn| = 11.2k

Fig. 18: The processing time under different distance thresh-
old.

and then prune those are useless candidate instances soon.
Therefore, the performance of our non-overlapping approach
is better than the EUCOLOC algorithm.

V. CONCLUSION

In this paper, we have proposed an approach which gen-
erates size-k candidate instances efficiently. In our approach,
we use less storage than the EUCOLOC algorithm to store
the data points with neighbor relations because our incre-
mental neighbors database does not overlap with the original
neighbors database. We rearrange the relation by the aster-
isk annotation priority before we construct the incremental
neighbors database. In this way, we can avoid generating non-
incremental candidate instances. Moreover, we also check the
subset relation of neighbor instances before we generate size-

k candidate instances. In this way, we can avoid generating
non-clique candidate instances completely. Therefore, we can
generate fewer number of candidate instances than the EU-
COLOC algorithm. The experimental results have shown that
our approach is better than the EUCOLOC algorithm.
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